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A system of two asymmetrically coupled van der Pol oscillators has been studied. We show that

the introduction of a small asymmetry in coupling leads to the appearance of a “wideband

synchronization channel” in the bifurcational structure of the parameter space. An increase of

asymmetry and transition to repulsive interaction leads to the formation of multistability. As the

result, the tip of the Arnold’s tongue widens due to the formation of folds defined by saddle-node

bifurcation curves for the limit cycles on the torus. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4940967]

One of the basic models of self-oscillating systems is the

van der Pol oscillator. This model is widely used in

studies of synchronization phenomena of quasi-harmonic

periodic oscillations. The bifurcation mechanisms under-

lying the mutual synchronization of two van der Pol

oscillators can be described comprehensively by the well-

known structure called the Arnold tongue on the parame-

ter plane spanned by natural frequency mismatch and

coupling coefficient. The distinguishing feature of this

structure is that the bifurcation curves limiting the

synchronization region converge to a single point when a

coupling parameter decreases. At zero value of the

coupling coefficient, synchronization disappears. In this

paper, we show that transition to an asymmetrical and

repulsive coupling leads to substantial changes in bifurca-

tion structure of the Arnold tongue, particularly to an

expansion of synchronization region at small coupling

coefficient values, to disappearance of the tip of Arnold

tongue, and to the formation of a multistability region.

I. INTRODUCTION

Synchronization phenomena are very important for sci-

ence and technology and have attracted high attention among

researchers in different fields of science.1,2 Synchronization

can be observed in systems of different nature and complex-

ity.3–9 Besides, synchronization can be realized for different

types of oscillations: periodic,10 quasi-periodic,11–13 cha-

otic,14–17 and stochastic.2,8,18,19

Usually, when synchronization of a specific type of

oscillations is studied, one uses paradigmatic models which,

on the one hand, demonstrate some wanted behavior, and on

the other hand these models have a rather simple form and

can be described by, e.g., a rather simple system of differen-

tial equations. One of the basic models for a periodic self-

sustained oscillator is the van der Pol oscillator,20 which

has been widely used for the study of mutual and external

synchronization phenomena in small and large ensembles

with different types and topologies of coupling.21,22

It should be noted that it is the type of coupling which

defines essential peculiarities of the behavior of interacting

oscillators, particularly van der Pol oscillators. In Ref. 23, it

has been shown that the character of the coupling defines the

stability of a specific dynamical regime as well as the forma-

tion of multistability in a system of two interacting van der

Pol oscillators.

Recently, the attention of researchers has been attracted

to asymmetrical coupling24 and repulsive coupling.25,26 In

particular, these types of coupling have become popular due

to the recent successes in synthetic biology, where coupling

is realized naturally in a system of genetic oscillators (repres-

silators).27 Moreover, the asymmetrical and repulsive inter-

action is typical for other biological systems, e.g., neural

ensembles and networks. It is well known that such biologi-

cal networks incorporate different types of interaction due to

the existence of excitatory and inhibitory synapses in the

brain, which enhance synchronization and signal transmis-

sion.28 The different types of interaction introduce asymme-

try which can be quantitatively realized in different phase

shifting leading to various special effects. In Ref. 29, pattern

formation has been studied in a two-dimensional array of

oscillators with a phase-shifting interaction. Particularly, the

phase shift of p which corresponds to the repulsive interac-

tion was considered there. The repulsive interaction also

attracted author’s attention in Ref. 30 where the effect of

the network topology on the dynamics of non-identical

oscillators has been studied. It has been shown that a small

amount of repulsive connections increases activity and
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synchronization in the whole network. The existence of

nodes with repulsive links facilitates the propagation of

activity in a network. It also should be noted that the repul-

sive coupling is presented not only in biological systems,

e.g., in Ref. 31, a chain of repulsively coupled chaotic oscil-

lators has been studied and compared with an experimental

laser system with negative feedback and delay.

The role asymmetrical and repulsive coupling plays in

synchronization of two van der Pol oscillators by external

harmonic forces has been considered in Ref. 32 with the help

of phase-reduction approach. It has been shown that the

structure of the phase space of the Kuramoto phase oscilla-

tors becomes substantially more complicated when an asym-

metrical repulsive coupling is introduced. In the system of

phase oscillators, besides the saddle-node bifurcations, the

Andronov-Hopf bifurcations can be realized which leads to

multistability in this system. However, a detailed analysis

of the non-reduced system of van der Pol oscillators has not

been done yet. Moreover, a detailed bifurcation analysis of

an autonomous system of two van der Pol oscillators with an

asymmetrical repulsive coupling has not been done is also an

open problem.

Therefore, we study here the dynamics of an autono-

mous system consisting of two van der Pol oscillators

with asymmetrical repulsive coupling and carry out a bifur-

cation analysis for both the amplitude-phase reduced model

(Stuart-Landau equations) and the non-reduced initial model.

We suppose that such two-way consideration is important

because the use of amplitude-phase reduction decreases the

phase space dimension and simplifies the analysis of its

structure and bifurcations. Moreover, the Stuart-Landau

model is frequently used as an independent one.33

This paper is organized as follows. In Sec. II, we derive

and analyze the dynamics and bifurcations in a reduced

model of two asymmetrically coupled van der Pol oscillators.

In Sec. III, we analyze the non-reduced system and compare

it with the results obtained in Sec. II. In Conclusions, we

summarize the presented results and discuss their possible

application.

II. QUASIHARMONIC APPROACH

A. Derivation of the system equations

A system of two van der Pol oscillators with an asym-

metrical repulsive coupling can be written in the following

form:

€x1 � ðe� x2
1Þ _x1 þ x2

1x1 � c1ð _x2 � _x1Þ ¼ 0;
€x2 � ðe� x2

2Þ _x2 þ x2
2x2 � c2ð _x1 � _x2Þ ¼ 0:

�
(1)

Here, x1;2 are the dynamical variables of the first and second

oscillators, respectively, e is a control parameter which

characterizes the linear dissipation in the system, x1;2 are the

natural frequencies of the first and second oscillators, respec-

tively, and c1;2 are the coupling coefficients where c1 6¼ c2 in

the general case.

According to the quasiharmonic approach, we find the

following solution for Eq. (1):34

x1;2 tð Þ ¼ A1;2 tð Þejxt

2
þ

A�1;2 tð Þe�jxt

2
;

_x1;2 ¼
1

2
A1;2jxejxt � A�1;2jxe�jxt
� �

;

where x is some frequency which is common for both inter-

acting oscillators in the regime of synchronization. Then, the

variables A1;2 have to satisfy the following condition:

_A1;2ejxt þ _A
�
1;2e�jxt ¼ 0;

and the second derivatives are

€x1;2 ¼ _A1;2jxejxt � 1

2
A1;2x

2ejxt þ A�1;2x
2e�jxt

� �
:

Sequential substitution of the obtained derivatives,

divide by jxejxt, and averaging over the period 2p
x gives the

following:

_A1 �
eA1

2
þ 1

8
jA1j2A1 þ j

x2 � x2
1

2x
A1 þ

c1

2
A1 � A2ð Þ ¼ 0;

_A2 �
eA2

2
þ 1

8
jA2j2A2 þ j

x2 � x2
2

2x
A2 þ

c1

2
A2 � A1ð Þ ¼ 0:

8>>><
>>>:

(2)

We denote
x2�x2

1;2

2x ¼ D1;2;
c1;2

2
¼ g1;2 and rewrite the

complex amplitudes as

A1;2 ¼ q1;2eju1;2 : (3)

As a result, we get the following system of equations:

_q1þ j _u1q1�
e
2
q1þ

1

8
q3

1þ jD1q1þg1q1�g1q2ej u2�u1ð Þ ¼0;

_q2þ j _u2q2�
e
2
q2þ

1

8
q3

2þ jD2q2þg2q2�g2q1ej u1�u2ð Þ ¼0:

8>><
>>:

(4)

Next, we introduce the phase difference variable / ¼ u2 � u1

and denote the parameter mismatches d ¼ D1 � D2; g ¼ g1;
Dg ¼ g2 � g1. Separating the real part from the imaginary part

in Eq. (4), one obtains

_q1 ¼
e
2

q1 �
1

8
q3

1 þ g q2 cos /ð Þ � q1ð Þ;

_q2 ¼
e
2

q2 �
1

8
q3

2 þ gþ Dg

� �
q1 cos /ð Þ � q2ð Þ;

_/ ¼ d� gþ Dg

� � q1

q2

þ g
q2

q1

� �
sin /ð Þ:

8>>>>>>><
>>>>>>>:

(5)

We should note that the obtained system is three-dimensional

and the axis corresponding to the variable / is 2p-periodic.

B. Bifurcational analysis of the reduced system

Now we analyze changes in the phase space structure

and bifurcations in (5) versus the variation of control

parameters. We first fix the following values of control

parameters: e ¼ 0:25; d ¼ 0:01; g ¼ 0:045; and Dg ¼ 0.
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The corresponding phase portrait is represented in Fig.

1(a). The observed structure remains in a certain interval

of the natural frequency mismatch d. Now fix d ¼ 0:01 and

follow the bifurcational transitions in (5) versus the cou-

pling coefficient g. The corresponding bifurcation diagram

is represented in Fig. 2(a). It is clearly seen that decreasing

of the coupling coefficient leads to the sequential emer-

gence of a pitchfork bifurcation (P3) and a saddle-node

bifurcation (SN). The pitchfork bifurcation leads to the

emergence of new saddle equilibrium states (denoted by 3

and 4), which are shown in Fig. 1(b). The stable equilib-

rium state undergoes a saddle-node bifurcation when the

value of the mismatch parameter d is varied. The corre-

sponding bifurcation diagram is represented in Fig. 2(b). In

Fig. 3(a), we show a two-parametric bifurcation diagram

on the ðd; gÞ plane. This diagram represents the well-

known structure of a synchronization (Arnold) tongue

which was described in, e.g., Ref. 23. Here, region I corre-

sponds to the situation when the system has only one

attractor which is a stable equilibrium point in the origin.

Regions II; III; IV correspond to a stable equilibrium with

non-zero coordinates. Region V corresponds to a stable

limit cycle. The curves lP1;2;3
denote pitchfork bifurcations,

lAH and lSN denote Andronov-Hopf and saddle-node bifur-

cations, respectively.

Now we evaluate the role which the asymmetry plays

which is introduced into the coupling channel by setting the

value Dg ¼ �0:005. For this case, a bifurcation diagram on

the parametric plane ðd; gÞ is represented in Fig. 3(b). By

comparing the structures of the synchronization regions in

Figs. 3(a) and 3(b), one can see some changes induced by the

asymmetry in the coupling. There two curves replace a

single curve separating regions I and V in the case of

symmetrical coupling: lP2
and lAH0 . Therefore, a channel

appeared which is confined by these two new curves. This

channel enables us to observe a phase space structure which

is equivalent to the case of d¼ 0 even for significant values

of frequency mismatch d. The emergence of this channel and

its structure were studied in, e.g., Refs. 35 and 36. It was

shown there that a necessary condition for the emergence of

this channel was the nonidentity of the interacting systems in

their nonlinearity parameters. In contrast, here the noniden-

tity is provided by the coupling asymmetry (see Eq. (5)).

Now we increase the asymmetry in interaction by setting

Dg ¼ �0:05. The corresponding bifurcation diagram is

shown in Fig. 3(c). The main difference in the bifurcational

structure from the cases considered above is the emergence

of a widened region on the tip of synchronization tongue for

small values of the g. Let us consider this region in more

detail (see Fig. 3(d)). It can be seen that there is an overlay-

ing of two regions limited with different saddle-node bifur-

cation curves. Therefore, by varying the value of d at small

values of g, there occur two saddle-node bifurcations which

lead to the emergence of two stable equilibrium states. Thus,

we show for small values of g and for a small mismatch

parameter d system (5) is characterized by bistability. There

FIG. 1. The projections of the phase portraits of system (5) on ðq2 cos /; q1 sin /Þ plane with e ¼ 0:25; d ¼ 0:01; Dg ¼ 0 and (a) g¼ 0.045; (b) g¼ 0.02; and

(c) g¼ 0.0025. Here, 1 is a stable node; 2, 3, 4 are saddles; 0 is a repeller; and C is a stable limit cycle. It should be noted that the crossing of curves observed

in panel (b) is the result of projection of the 4-dimensional phase space on a plane, and it does not correspond to an intersection of the phase trajectories.

FIG. 2. Bifurcation diagrams of system

(5): (a) e ¼ 0:25; d ¼ 0:01; Dg ¼ 0

and (b) e ¼ 0:25; g ¼ 0:03; Dg ¼ 0.

Here, 1 is a stable node; 2, 3, 4 are sad-

dles; 0 is an unstable node (repeller);

SN is the point of saddle-node bifurca-

tion; and P2;3 are points of pitchfork

bifurcation. Solid and dashed lines rep-

resent stable and unstable fixed points,

respectively.
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are two stable equilibrium states in the phase space on the

same closed invariant curve, which are separated by two sad-

dle equilibrium points (see Fig. 4).

Based on the presented bifurcational analysis of the

reduced model (5), one can expect that the bistability can be

expected in the initial system of two asymmetrically coupled

van der Pol oscillators (1). Since the fixed points in the

reduced equation correspond to limit cycles in the original

system, one should expect the emergence of two stable limit

cycles situated on the surface of a single two-dimensional

torus for small values of the coupling coefficient and the mis-

match in the natural frequencies.

III. NON-REDUCED SYSTEM

A. Symmetrical coupling

Now we analyze the dynamics of the non-reduced sys-

tem of two symmetrically coupled van der Pol oscillators

denoted by Eq. (1). It should be noted that a similar analysis

was carried out earlier (see Ref. 36). We recall these results

in order to use them in our studies. Before we start the bifur-

cational analysis, it is convenient to rewrite the initial system

(1) in the following form:

€x1 � ðe� x2
1Þ _x1 þ x1 ¼ cð _x2 � _x1Þ;

€x2 � ðe� x2
2Þ _x2 þ p2x2 ¼ ðcþ DcÞð _x1 � _x2Þ:

(
(6)

Here, we set x1 ¼ 1 and denote p ¼ x2=x1; c ¼ c1;
Dc ¼ c2 � c1, the rest parameters and variables are the same

as in Eq. (1). At first, we consider the dynamics of system

(6) in case of symmetric coupling with Dc ¼ 0, while the

nonlinearity parameter e is increasing and the other parame-

ters are fixed at the following values: c ¼ 0:15 and p¼ 1.1.

The corresponding bifurcation diagram is represented in Fig.

5(a). As one can see, the only attractor for e < 0 is an equi-

librium state. At e ¼ 0:0381, the equilibrium state undergoes

FIG. 3. Bifurcation diagram for the

reduced system (5): (a) Dg ¼ 0; (b)

Dg ¼ �0:005; and (c) and (d)

Dg ¼ �0:05. Region near d¼ 0 in (c)

is enlarged in panel (d). Region I cor-

responds to a stable equilibrium point

in the origin; regions II; III; IV corre-

spond to a stable equilibrium with non-

zero coordinates; and region V corre-

sponds to a stable limit cycle. The

curves lP1;2;3
denote pitchfork bifurca-

tions, lAH and lSN denote Andronov-

Hopf and saddle-node bifurcations,

respectively.

FIG. 4. Phase portrait of system (5) with Dg ¼ �0:05; e ¼ 0:25; d ¼ 0:002;
g ¼ 0:02.
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an Andronov-Hopf bifurcation AH1 and a steady limit cycle

C1 appears. Further increase of e leads to a second

Andronov-Hopf bifurcation AH2 of the fixed point (which is

a saddle before this bifurcation), resulting into the appear-

ance of a saddle limit cycle C2. The relative position of these

limit cycles is represented in Figs. 6(a) and 6(b). At larger

values of e, the saddle limit cycle C2 undergoes a pitchfork

bifurcation (denoted PB in Figure 5). After this bifurcation,

three unstable limit cycles (C2, C1
2, and C2

2) appear in the

phase space besides the stable limit cycle C1 (see Figs. 6(c)

and 6(d)). Variation of the coupling coefficient c leads to a

shifting of the bifurcational values of the control parameters.

The bifurcation diagram for c ¼ 0:2 is depicted in Fig. 5(b).

It can be easily seen that the bifurcations are now shifted to

the right along the parametric axis.

The influence of the coupling parameter has been stud-

ied with a two-parametric bifurcation analysis. The corre-

sponding bifurcation diagram on the parametric plane ðe; cÞ
is represented in Fig. 7(a). There are five regions which can

be distinguished in the diagram. In region I, the dynamical

system (6) is characterized by an attractor E which is

focus. Region I is limited by two bifurcational curves on its

right side: lAH1
and lT. The curve lAH1

corresponds to an

Andronov-Hopf bifurcation of the fixed point E. Therefore,

in region II, system (6) demonstrates a stable limit cycle and

the saddle fixed point E. The right side of region II is limited

with another curve lAH2
for an Andronov-Hopf bifurcation of

the saddle equilibrium state E. The saddle limit cycle C2

appears in the phase space as the result of this bifurcation.

Hence, in the range of the control parameters in region III,

FIG. 5. Bifurcation diagram for system

(6) with p ¼ 1:1; e 2 ½0; 1� and (a)

c ¼ 0:15; (b) c ¼ 0:2. Here, AH1;2 are

the Andronov-Hopf bifurcations, PB is

the pitchfork bifurcation, E is the equi-

librium state, and C1;2 and C1;2
2 are the

limit cycles.

FIG. 6. Phase portraits of the limit

cycles in system (6) with p ¼ 1:1; c ¼
0:15 and (a), (b) e ¼ 0:3; (c), (d)

e ¼ 0:5.
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the phase space includes two limit cycles (the stable one and

the saddle one) and the unstable fixed point E. One can see

their relative position in Figs. 6(a) and 6(b). Region III is

limited by the pitchfork bifurcation curve lPB at bottom. This

bifurcation occurs with the saddle limit cycle C2. In region

IV, the system is characterized by the unstable fixed point E
and four limit cycles: the stable cycle C1 and three unstable

cycles C2, C1
2, and C2

2. Regions IV and V are separated by

the saddle-node bifurcation curve for the limit cycles C1 and

C2. These cycles are situated on the surface of a two-

dimensional torus, and after a tangency bifurcation the torus

becomes the only attractor in system (6). Regions I and V

are separated by the bifurcation curve lT. This bifurcation

corresponds to the birth of a stable two-dimensional torus in

the vicinity of the equilibrium state E. This bifurcation is

degenerate. Further, we show that this degeneracy can be

avoided by introducing asymmetry into system (6). The

bifurcation diagram presented in Fig. 7(b) illustrates the tran-

sition from region II to region V.

Now we fix the control parameter e ¼ 0:15 which corre-

sponds to the only limit cycle C1 in the phase space. Varying

the coupling coefficient c and the natural frequency mis-

match parameter p, one can observe synchronization phe-

nomena in two coupled van der Pol oscillators (6). These

phenomena are described in the bifurcation diagram in Fig.

8(a). We find there synchronization as well as amplitude

FIG. 7. (a) Two-parametric bifurcation

diagram for system (6) on the paramet-

ric plane ðe; cÞ for p¼ 1.1. Here, lAH1;2

are the Andronov-Hopf bifurcation

curves, lPB is the pitchfork bifurcation

curve, and lSN is the saddle-node bifur-

cation curve. (b) Bifurcation diagram

for system (6) for p ¼ 1:1; e ¼ 0:5;
c 2 ½0; 0:5�. Here, E is the fixed point,

C1 is the stable limit cycle, C2, C1
2, and

C2
2 are the unstable limit cycles, AH2 is

the Andronov-Hopf bifurcation, PB is

the pitchfork bifurcation, and SN is the

saddle-node bifurcation.

FIG. 8. Bifurcation diagram for system

(6) on the parametric plane ðp; cÞ: (a)

Dc ¼ 0; (b) Dc ¼ �0:01; and (c) and

(d) Dc ¼ �0:1. Here, p ¼ x1=x2;
x1 ¼ 1, and e ¼ 0:15; lAH1;2

are curves

for the Andronov-Hopf bifurcations;

lPB is the pitchfork bifurcation curve;

and lSN is the curve for the saddle-node

bifurcation.
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death. It should be noted that the results obtained for the

non-reduced system (6) in case of symmetrical coupling

completely correspond to the results obtained for the reduced

model (5) by taking into account the increase of phase space

dimension.

It should be also noted that the presented results are well

known and became a part of classical synchronization

theory. However, it is necessary to recall these results before

new phenomena for the asymmetrical case, which are pre-

sented below will be described from the viewpoint of this

theory.

B. The role of asymmetry

Now we consider the influence of asymmetry in the

coupling of two interacting oscillators on the bifurcational

structures, in particular, the emergence of oscillations and

their synchronization. In order to do this, we set Dc 6¼ 0 in

(6). Let us consider the evolution of the bifurcation diagram

in Fig. 5 induced by varying of Dc. In Fig. 9(a), one can see

that asymmetry avoids the degeneracy and the pitchfork

bifurcation is replaced by a saddle-node bifurcation. Also,

the parameter values corresponding to the Andronov-Hopf

bifurcations shift when the asymmetry is introduced into the

coupling.

By comparing the results presented in Figs. 7(a) and 10,

we see that the introduction of asymmetry in the coupling

leads to a splitting of the curve lT into three bifurcation

curves: lAH1
; lAH2

, and lNS. Now the transition from region I

to region V leads to three consequent bifurcations: the first

Andronov-Hopf bifurcation of the fixed point E leading to

the emergence of the stable limit cycle C1, the second

Andronov-Hopf bifurcation of E and the Neimark-Sacker

bifurcation of the limit cycle C1. Also, we should note that

there appears a region in the parametric plane where the

asymmetry induces the stable periodic oscillating regime C1,

while for Dc ¼ 0 the system demonstrates only the equilib-

rium E.

The asymmetry affects not only the emergence of self-

sustained oscillations but also synchronization of interacting

oscillators. Varying Dc, one can observe changes in bifurca-

tional structures in the parametric plane (p, c) (Fig. 8(b)).

The mismatch in the coupling parameter leads to the same

consequences as in the case of nonequality in the nonlinear-

ity parameter e for interacting systems:35,36 the curves

separating the amplitude death region and the region for qua-

siperiodic oscillations split into two curves, one for an

Andronov-Hopf bifurcation and another one for a Neimark-

Sacker bifurcation.

If Dc is sufficiently large, multistability in (6) emerges.

In Fig. 8(c), we show the two-dimensional bifurcation

diagram on the parametric plane ðp; cÞ. Just as in case of the

reduced system (5) (see Fig. 3(c)), the tip of the synchroniza-

tion tongue has an increased width. Such bifurcational struc-

ture has appeared due to the emergence of two new curves

for saddle-node bifurcations: LSN0
1

and LSN0
2

(see Fig. 8(d)).

Therefore, after two saddle-node bifurcations, there are two

stable limit cycles laying on the same two-dimensional

ergodic torus that appears with a pair of two saddle limit

cycles which separate one stable cycle from the other.

The appearance of coexisting limit cycles as the result

of saddle-node bifurcations is illustrated in Fig. 11(a).

It should be noted that the limit cycles C1;2 and C01;2 are situ-

ated on the surface of a two-dimensional torus (see Fig.

11(b)). Therefore, the disappearance of a couple of limit

cycles as the result of a saddle-node bifurcation (SN2 or SN01)

FIG. 9. Bifurcation diagram for system

(6) with p ¼ 1:1; e 2 ½0; 1�; Dc ¼
�0:01 and (a) c ¼ 0:15; (b) c ¼ 0:2.

Here, AH1;2 are the Andronov-Hopf

bifurcations, E is the equilibrium state,

and C1;2 and C1;2
3 are the limit cycles.

FIG. 10. Two-parametric bifurcation diagram for system (6) on the paramet-

ric plane ðe; cÞ for p ¼ 1:1; Dc ¼ �0:01. Here, lAH1;2
are the curves for

Andronov-Hopf bifurcations.
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does not lead to the emergence of a stable torus, and the

phase point goes to the residual stable limit cycle on the

torus. Hence, the bifurcational scenario of appearance of

bistability and the corresponding bifurcational structure of

the parameter space obtained from the reduced model (5)

completely describes the bifurcational mechanisms underly-

ing the synchronization and multistability in the initial model

of two asymmetrically coupled van der Pol oscillators. The

phases of the coexisting limit cycles C1; C01 are shifted on

the quarter of period, which can be seen from panel (c) of

Figure 11. At the same time, their periods are close: the pe-

riod of oscillations corresponding to limit cycle C1 is 6.473,

while for C01 the period is 6.196.

IV. CONCLUSIONS

In this paper, we have studied a system of two van der

Pol oscillators characterized by asymmetry in dissipative cou-

pling. The dynamics of this system has been considered in a

quasi-harmonic approach as well as without any reduction.

We have found that the introduction of small asymmetry

affects the structure of synchronization region in the parame-

ter space in the same way as the introduction of non-identity

in nonlinearity parameters of interacting oscillators. As the

result of asymmetry in interaction, a “wideband synchroniza-

tion channel”35 emerges. Increase of asymmetry and transition

to repulsive interaction leads even to the formation of multi-

stability in the phase space of the system: two stable limit

cycles coexist on the surface of a two-dimensional torus. It

also should be emphasized that the bifurcation structure of the

synchronization region in the parameter space undergoes

significant changes. The tip of the Arnold’s tongue widens

due to the formation of folds defined by saddle-node bifurca-

tion curves for the limit cycles on the torus.

It also should be noted that the considered model is

described by a four-dimensional dissipative nonlinear dy-

namical system. Therefore, there is a possibility to obtain a

chaotic attractor in its phase space. However, our main goal

was to consider the regular dynamics for relatively small

nonlinearity and coupling coefficient values, and therefore

we did not carry out an analysis for the emergence of a cha-

otic attractor. In particular, we cannot exclude the possibility

for a chaotic behavior of the model in a wider area of the pa-

rameter space, this will be the subject for further research.

The presented results are of special importance for the

studies of different basic biological systems, e.g., neural

ensembles as they are modeled by networks of van der Pol

oscillators or even their phase reduction—Kuramoto oscilla-

tors.37 It should be emphasized that the bistability phenomenon

observed above is realized for a weak coupling between oscil-

lators. Taking into account that it was experimentally verified

in Ref. 38 that the interaction between neurons is weak, our

results are relevant to neuroscience and can be used to describe

the phenomena of multistability and cluster synchronization in

neural ensembles of different size and topology.
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FIG. 11. (a) Emergence of coexisting

stable limit cycles in (6) when crossing

the synchronization region at

c ¼ 0:044. (b) Phase portrait of system

(6) with e ¼ 0:25; p ¼ 0:999;
c ¼ 0:044. Here, C1 and C01 are the sta-

ble limit cycles, C1
3 and C10

3 are the sad-

dle limit cycles. (c) Time series of the

coexisting stable limit cycles. (d)

Projections of the coexisting stable

limit cycles on the plane ðx1; x2Þ.
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